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Abstract

We describe a hierarchical scheme for rapid adaptation of context dependent
“skills”. The underlying idea is to first invest some learning effort to specialize the
learning system to become a rapid learner for a restricted range of contexts. This
is achieved by constructing a “Meta-mapping” that replaces an slow and itera-
tive context adaptation by a “one-shot adaptation”, which is a context-dependent
skill-reparameterization.

The notion of “skill” is very general and includes a task specific, hand-crafted
function mapping with context dependent parameterization, a complex control
system, as well as a general learning system.

A representation of a skill that is particularly convenient for the investment
learning approach is by a Parameterized Self-Organizing Map (PSOM). Its direct
constructability from even small data sets significantly simplifies the investment
learning stage; its ability to operate as a continuous associative memory allows
to represent skills in the form of “multi-way” mappings (relations) and provides
an automatic mechanism for sensor data fusion.

We demonstrate the concept in the context of a (synthetic) vision task that in-
volves the associative completion of a set of feature locations and the task of
one-shot adaptation of the transformation between world and object coordinates
to a changed camera view of the object.

1 Introduction

The data-driven construction of non-linear mappings for interpolation and classification
has been among the most widely used features of artificial neural networks (ANN).
This has led to a strong emphasis of feed-forward networks and to much fruitful work
at elucidating their capabilities from the perspective of interpolation, statistics, and
approximation theory [3, 11].

However, there is clearly more to ANNs than the approximation of a nonlinear
function'!. As applications of neural networks have become more demanding, the issue
of how to build neural systems that are composed of multiple mapping modules has
received increasing attention [4], raising the question of how such systems can be trained
without requiring inordinately large training sets. This is particularly urgent in areas
where training samples are not abundant or are costly, such as, e.g., in robotics. Related

Lthe reader will be aware of the fact that any computation can be viewed as a sufficiently complex
vector valued function; however, this theoretical possibility does not mean that this is always the most
productive viewpoint.



with this 1s the important question of how to achieve “one-shot”-learning, 1i.e., the
ability of a system to adapt to a particular context within a single or at least a very
small number of trials. Finally, we should weaken the emphasis of “one-way” mappings.
A much more natural and flexible formulation of many tasks, such as, e.g., flexible
sensor fusion, is in terms of continuous relations and the corresponding required ability
is that of a continuous associative memory instead of the much more rigid one-way
mappings of feedforward networks.

In the present paper we attempt to address some of these issues. First, we show how
the recently introduced Parameterized Self-Organizing Maps (“PSOMs” [6, 8]) can be
used as a flexible continuous associative memory that offers a very natural approach
to the problem of sensor fusion [1].

As an 1llustration we consider the task to associate for a continuous set of camera
views of a rigid 3D-object the spatial positions of occluded point features from varying
subsets of visible point features. Sensor fusion occurs automatically when the PSOM is
offered more than a minimally necessary set to determine the orientation of the object.
In this case, the redundant information is exploited for an increased accuracy of the
inferred point locations.

We then describe a learning architecture in which a PSOM can be combined with
other mapping modules (some or all of which may be PSOMs again) in such a way
that the resulting system can be prestructured for the ability of “one-shot-learning”
or “one-shot-adaptation” by means of a prior “investment learning” phase. Here, the
underlying idea is that one-shot adaptation can be achieved with a “Meta-mapping”
for the dynamic reparameterization of one or several mapping module(s) that repre-
sent(s) the “skill” that is to be adapted; this “Meta-mapping” is constructed during
the investment learning phase and its input is a sufficient (small) number of sensor
measurements that characterise the current context.

To make the paper self-contained, we give a brief summary of the main character-
istics of the PSOM approach in the next section, and append a condensed description
in the appendix. A more detailed account, together with result of applications in the
domain of vision and robotics, see [9, 10, 7].

2 Properties of PSOMs

The PSOM 1is characterized by the following important features:

e The PSOM is the continuous analog of the standard discrete self-organizing map
([5]). Tt shows excellent generalization capabilities based on attractor manifolds
instead of just attractor points.

e For training data sets with the known topology of a multi-dimensional cartesian
grid the map manifold can be constructed directly. The resulting PSOM is im-
mediately usable — without any need for time consuming adaptation sequences.
However, further on-line fine-tuning is possible, e.g., in the case of coarsely sam-
pled data or when the original training data were corrupted by noise.

o The price for rapid learning is the cost when using. The PSOM needs an iterative
search for the best-matching parameter location s* (Eq. 1 in the appendix).

e The non-linear associative completion ability of the PSOM can be used to rep-
resent continuous relations instead of just functions (“dynamic multi-way map-
ping”). This is illustrated in Fig. 1. The choice of an input variable set is made
by specifying a suitable diagonal projection matrix P whose non-zero elements



select the input subspace(s) together with a possible relative weighting of the
input components for the non-linear least-square best-match (see Eq. 1 in the
appendix for the best-match vector w(s*).)
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Figure 1: “Continuous associative memory” supports multiple mapping directions. The

specified P matrices select different subspaces (here symbolized by A, B and C~’) of the em-
bedding space as inputs. Values of variables in the selected input subspaces are considered
as “clamped” (indicated by a tilde) and determine the values found by the iterative least
square minimization (Eq. 1). for the “best-match” vector w(s*). This provides an associative
memory for the flexible representation of continuous relations.

3 Image Completion and Object Orientation Identi-
fication

To illustrate the flexibility of the PSOM-approach, we consider a task from the vi-
sion domain. Here, we are often confronted with the following sensor-fusion problem:
given the identity of a geometric object together with a number of measurements of
continuous valued features (such as the 2D-image locations of a subset of salient point
features), use this information to infer a set of “missing” variable values, such as the
location of occluded object parts or the 3D-orientation and/or location of the object.

Although the approach is not restricted to the use of camera sensors, we consider
the case when the sensor measurements is a set of 2D locations of salient object features
(of known identity). Such information would have to be obtained by some suitable pre-
processing stage; in the present context we consider a synthetic vision task in which
the set of 2D-locations has been computed from a perspective projection of a geometric
object model. We also assume that the object has already been centered (by some suit-
able tracking process), leaving us with four remaining degrees of freedom: orientation
and depth, which we describe by roll ¢, pitch 6, yaw 1 and z [2].

Figure 2: (a) The cubical test object seen by the camera when rotated and shifted in several
depths z (¢=10°, §=20°, ¢)=30°, z=2...6L, cube size L.) (b—d) 0°, 20°, and 30° rotations
in the roll ¢, pitch 8, and yaw 1 system.

Fig. 2 shows the camera view of the test object (a unit cube, but note that the
method works in the same way with any (fixed) shape) for different orientations and



depths. This provides a different characterization of object pose by the coordinate
pairs @p, of a set of salient feature points P;, ¢ = 1,2,...n on the object (for the
cube, we choose its eight corners, i.e., n = 8). Therefore, a convenient embedding
space X is spanned by the 4 + 2n variables x = (¢,0, v, z, tip1,tpa,---,dp,). For the
construction of the PSOM, X was sampled at the 81 points of a regular 3x3x3x3 grid
(in ¢,0,, z-space) covering a range of 150° for each orientation and twice the edge
length L of the cube for the depth dimension.

Fig. 3 depicts some examples, in which orientation and depth of the cube were
inferred using the constructed PSOM with the image positions of four of its corners
(indicated by asterisks) chosen as input (dotted lines indicate true, solid lines indicate
reconstructed object pose).

The achieved root mean square (RMS) errors for recovering the object pose were
2.7°,3.2°, 2.8°  and 0.12L (for ¢,6,,z). The remaining four corner point locations
could be predicted within an accuracy of 1.3% of the mean edge image size. A more
detailed analysis of the impact of parameter variations, such as the range of the involved
variables, the number of training vectors, the sensor noise and the number of available
input points will be presented elsewhere [7].

Figure 3: Six
test poses. Dot-
ted lines indicate
the cubical test
objects seen
by the camera.
Asterisks  mark
the positions of
four corner points
used for  the
reconstruction of
the object pose,
indicated with
full lines.

4 Investment Learning in Prototypical Contexts

In this section we consider the problem of efficiently learning “skills” and there adap-
tation to changing context. To be concrete, we consider a “skill” | in form of a multi-
variate function mapping 7' : #1 — ¥, transforming between two task variable sets #;
and 2. We assume: (i) that the “skill” can be acquainted by a “transformation box”
(“T-Box”), which is a suitable building block with learning capabilities; (ii) the map-
ping “skill” T is internally modeled and determined by a set of parameters w (which
can be accessed from outside the “black box”, which makes the T-BoX rather an open,
“white box”); (i) the correct parameterization w changes smoothly with the context
of the system; (v) the situational context can be observed and is associated with a
set of suitable sensors values & (some of them are possibly expensive and temporarily
unavailable); (vi) the context changes only from time to time, or on a much larger
time scale, than the task mapping 7" 1s employed.
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Figure 4: The transformation T-BoX maps between task input #; and output #» spaces and
gets encoded in the parameter set w.

The conventional, integrated approach is to consider the problem of learning the
mapping from all relevant input values, #, ¢ to the desired output #5. This leads to a
larger, specialized network. The disadvantages are (i) the possible catastrophic inter-
ference (after-learning in a situated context may effect other contexts in an uncontrolled
way); (i) low modularity and re-usability.

Here, we approach a solution in a modular way and suggest to split learning:
(i) (structurally) among two modules, the META-Box and the T-Box, and (%) (tem-
porally) in two phases. The first, the investment learning stage may be slow and has
the task of learning prototypical context situations. It does not yet produce the final
solution, but instead pre-structures the system such that in the subsequent, the one-
shot adaptation phase, the specialization to a particular solution (within the chosen
domain) can be achieved extremely rapidly.

As illustrated in Fig.4, the META-BOX is responsible for providing the mapping
from sensory context observations ¢ to the parameter set w. Therefore, each T-Box
parameter/weight set w together with its associated context information & can serve
as a high-dimensional training data vector for constructing the META-BOX mapping
during the investment learning stage.

To obtain these training data vectors, we must choose a suitable set of prototypical
contexts j = 1,2, ... and determine for each of them the parameter set w; of an adapted
T-Box (1) and the context sensor observation ¢ ; (2). After the META-BoX has been
trained, the task of adapting the “skill” to a new system context is tremendously accel-
erated. Instead of any time-consuming re-learning of the (7') mapping this adjustment
now takes the form of an immediate META-BoX — T-BoX mapping (one-shot adapta-
tion): The META-BoX maps a new (unknown) context observation € new (3) into the
parameter / weight set wy, e,y for the T-BoX. Equipped with wy,e,, the T-BoX provides
the desired mapping Thew (4)-

In contrast to a mizture-of-experts architecture [4], suggesting a linear combination
of multiple, parallel working “expert” networks, the described scheme could be viewed
as non-linear “interpolation-of-expertise”. It is efficient w.r.t. network requirements in
memory and in computation: the “expertise” (w) is gained and implemented in a single
“expert” network (T-Box). Furthermore, the META-BOX needs to be re-engaged only
when the context is changed, which is indicated by a deviating sensor value ¢.

However, this scheme requires from the learning implementation of the T-Box,
that the parameter/weight set w is represented in a -with ¢ smoothly varying- “non-
degenerated” manner. E.g.a regular multilayer perceptron allows many weight per-
mutations w. Employing a MLP in the T-BoX would additionally require a suitable
stabilizer to avoid grossly inadequate interpolation between prototypical “expertises”
wj, denoted in different kinds of permutations.



5 Object Coordinate Transformation by Investment
Learning

To illustrate this approach let us revisit the vision example of Sec.3. For a robot,
an interesting skill in that setting could be to transform coordinates from a camera
centered (world or tool) frame (yielding coordinate values #1) to the object centered
frame (yielding coordinate values #5). This mapping would have to be represented by
the T-Box and its “environmental context” would be the current orientation of the
object relative to the camera. Fig. 5 shows three ways how the investment learning
scheme can be implemented in that situation. All three share the same PSOM network
type as the META-BoOX building block. The “Meta-PSOM” bears the advantage, that
the architecture can cope easily with situations, where various (redundant) sensory
values are un-available.
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Figure 5: Three different ways to solve the context dependent, or investment learning task.

The first solution (¢) uses the Meta-PSOM for the reconstruction of object pose
in roll-pitch-yaw-depth values from Sec.3. The T-BoX is given by the four succesive
homogeneous transformation on the basis of the ¢, 8 ¢,z values obtained from the
Meta-PSOM.

The middle solution (é¢) represents the coordinate transformation as the product
of the four successive transformations. Thus, in this case the Meta-PSOM controls
the coefficients of a matrix multiplication. As in (¢), the required w are gained by a
suitable calibration, or system identification procedure.

When no explicit ansatz for the T-BoX is already available, we can use method
(#4). Here, for each prototypical context, the required T-mapping is learned by a
network and becomes encoded in its weight set w. For this, one can use any trainable
network that meets the requirement stated at the end of the previous section; however,
PSOMs are a particularly convenient choice, since they can be directly constructed
from a small data set and since they offer the advantage of multi-way mappings.

To illustrate this for the present example, we chose for the T-Box a 2x2x2 “T-
PSOM?” that implements the coordinate transform for both directions simultaneously.
Its training required eight training vectors arranged at the corners of a cubical grid.

In order to compare approaches (i) — (4i¢), we computed the transformation T-Box
accuracy averaged over a set of 50 contexts (given by 50 randomly chosen object poses),
each with 100 object volume points Z5 to be transformed into camera coordinates
Z1. For the computed RMS value for the camera z,y, and z direction method (%)
gave the result [0.025,0.023,0.14]L. Method (i) led to the slightly better values of
[0.016,0.015,0.14] L. Approach (i), although not requiring any geometric analysis,
led to practically the same accuracy, namely [0.015,0.014,0.12]L.

6 Discussion and Conclusion

To be practical, learning algorithms must provide solutions that can compete with
solutions hand-crafted by a human who has analyzed the system. The criteria for



success can vary, but usually the costs of gathering data and of teaching the system
are a major factor on the side of the learning system, while the effort to analyze the
problem and to design an algorithmn is on the side of the hand crafted solution.

Here we suggest the PSOM as a versatile module for the rapid learning of high-
dimensional, non-linear, smooth relations. Based on a strong bias, introduced by struc-
turing the training data in a topological order, the PSOM can generalize from very few
examples - if this model is a good approximation to the system. The multi-way map-
ping ability PSOM is generated by the associative completion of partial inputs. We
showed an example in which this ability was used to infer the positions of occluded
feature points. In addition, this property leads to an interesting approach for the task
of sensor fusion, since redundant data are exploited to achieve a higher accuracy for
the inferred variable values.

As a general framework to achieve one-shot or very rapid learning we introduced the
idea of investment learning. While PSOMs are extremely well suited for this approach,
the underlying idea to “compile” the effect of a longer learning phase into a one-step
META-BOX is more general and is independent from the PSOMs. The META-BoX
controls the parameterization of a set of context specific “skills” which are implemented
in the form of one or several transforms or T-BoX. Thus, learning at the level of the
skills is replaced by their context-sensitive dynamic re-parameterization through the
META-Box-mapping. This emphasises an important point for the construction of more
flexible and more powerful learning systems: in addition to focusing on output values
we should increasingly embrace mappings that produce as their result other mappings
— a point of view that has in recent years also become increasingly emphasized in the
realm of functional programming languages.

We illustrated three versions of this approach when the output mapping was a
coordinate transform between a camera centered and an object centered frame of refer-
ence. They differed in their choice of the T-Box that was used. Comparing the three
choices we found that the neural network based T-PSOM can fully compete with ded-
icated one-way function mapping boxes while at the same time offering the additional
advantage of providing forward and backward transform simultaneously.

Appendix: The PSOM Algorithm

A PSOM is a parameterized, m-dimensional hyper-surface M = {w(s) € X C RY|s €
S C IR™} that is embedded in some higher-dimensional vector space X. M is used
in a very similar way as the standard discrete self-organizing map: given a distance
measure dist(x,x’) and an input vector x, a best-match location s*(x) is determined
by minimizing §* ;= argmin dist(x,w(s)) (1)
seS

The associated “best-match vector” w(s*) provides the best approximation of input
x in the manifold M. If we require dist(-) to vary only in a input sub-space X' of
X (ie., dist(x,x') = (x — x')TP(x — x/) = ZZ:1 pr(zr — 2},)%, where the diagonal
matrix P =diag(p1, - - -, pa) projects into X'™), s*(x) actually will only depend on Px.
The components of w(s*(z)) with zero diagonal elements p; can be viewed as the
output. The best-match vector w(s*) is the (non-linear) associative completion of a
fragmentary input x of which only the part Px us reliable. 1t is this associative mapping
that we will exploit in applications of the PSOM, see Fig. 1.

M 1s constructed as a manifold that passes through a given set D of data examples.
To this end, we assign to each data sample a point a € S and denote the associated
data sample by wg. The set A of the assigned parameter values a should provide a
good discrete “model” of the topology of our data set. The assignment between data



vectors and points a must be made in a topology preserving fashion to ensure good
interpolation by the manifold M that i1s obtained by the following steps.

For each point a € A, we construct a “basis function” H(-,a; A) or simplified?
H(-,a) : S — IR that obeys (i) H(a;,a;) = 1 for ¢ = j and vanishes at all other
points of A ¢ # j (orthonormality condition,) and (i) > 5. A H(s,a) = 1 for Vs
(“partition of unity” condition.) We will mainly be concerned with the case of A being
a m-dimensional rectangular hyper-lattice; in this case, the functions H(-,a) can be
constructed as products of Lagrange interpolation polynomials, see [10]. Then,

W(s) =D acaH(s,a) wa. (2)

defines a manifold M that passes through all data examples. Minimizing dist(-) in Eq. 1
can be done by some iterative procedure, such as gradient descent or — preferably —
the Levenberg-Marquardt algorithm [10]. This makes M into the attractor manifold
of a (discrete time) dynamical system. Since M contains the data set D, any at least
m-dimensional “fragment” of a data example x = w € D will be attracted to the
correct completion w. Inputs x ¢ D will be attracted to the interpolating manifold
point.
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