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Abstract

The recently introduced “Parameterized Self-Organizing Maps” (“PSOM”)
shows excellent function mapping capabilities after learning of a remarkable
small set of training data. This is a very important feature in fields where
the acquisition of training data is costly, for example in robotics. As a first
demonstration, we compare results for the task of kinematic mapping of a
3-DOF robot finger, obtained by a PSOM and a standard backprop network.

A new way of structuring learning becomes feasible: following the idea of
interpolating basis mappings learned for a small set of special circumstances,
we decompose learning into two phases:

(i) In the first investment learning phase we pre-train a hierarchical PSOM-
network with a set of basis mappings, each capturing a prototypical situation
or system context.

(i) Then in the second phase, the mapping “skill” adapts very rapidly, when
the system context changes to new, unknown situations.

In this paper we demonstrate the potential of this approach for the task
of a 3D visuo-motor map for a Puma robot and two independent movable
cameras. This includes the forward and backward robot kinematics in 3D
Cartesian end effector coordinates, the 2D+2D retina coordinates and also
the 6D joint angles. After the investment phase the correct transformation
can be learned in a new camera set-up with a single observation.

1 Introduction

Most current applications of neural network learning algorithms suffer from a large
number of required training examples. This may not be a problem when data are
abundant, but in many application domains, such as e.g. robotics, training exam-
ples are costly and the benefits of learning can only be exploited when significant
progress can be made within a very small number of learning examples. That such
performance can be achieved within the paradigm of statistical learning and on the
basis of the widely adopted multilayer-percectrons seems unlikely in view of the
massive research carried out along these lines during the last few years.

In the present contribution, we propose in Sec. 3 an hierarchical structured
learning approach which can be applied to many learning tasks that require system
identification from a limited set of observations. The idea build on the recently



introduced “Parameterized Self-Organizing Maps” (“PSOM”) [10, 11, 14], whose
strength 1s learning maps from a small number training data. Before giving a short
mathematical description in Sec. 2, we’d like to demonstrate this briefly by an
example:

Fig.1 depict the PSOM application to kinematic of robot finger with 3 degrees-
of-freedom (DOF). The mechanical design roughly allows the mobility of the human
index finger, scaled up by about 10 % (details can be found in [13].)

Due to the limited space, we describe this task here as a abstract, non-linear
mapping, and try to visualize the essentials. The learning goal is the proper cor-
respondence of a 3D rectangular grid (joint angles) and the “banana” like grid
structure (1b) (finger tip in Cartesian space; confirm this workspace with your fin-
ger!) on the basis of a 3x3x3 training set rendered in (1c). The resulting (inverse
kinematic) mapping when calling for a grid test set (1b) is the almost rectangular
structured (of the resulting joint angle) set (1d). The interesting measure for the
mapping performance is here (the Cartesian positioning error) the deviation of the
back-projected result (1e) from the original desired set (1b).

d)

Figure 1: Kinematic mapping example of a 3 DOF robot finger. (a) Stroboscopic image
of one finger in a sequence of extreme joint positions. (b) Perspectives of the workspace
envelope, tracing out a cubical 10x10x10 grid in the full joint angle space g. (c) A 3x3x3
grid, serving a training set. (Following the connecting lines allows one to verify that the
“banana” really possesses a cubical grid structure.) (d) PSOM inverse kinematic result
using the grid test set displayed in (b). (e) True work space after back transforming set
(d). We measure the mean Cartesian deviation (b-e) here as 1.6mm or 1.0 % of the
maximum workspace length of 160 mm.

€ €; n=3 n=4 n=5
BP-net 3-50-3  0.02 0.004 72% 57% 54%
BP-net 3-100-3 0.01 0.002 8% 64% 51%
PSOM - - 62% 37% 04%

Table 1: Normalized root mean square error (NRMS) for a training set of nxnxn points,
obtained by the two best performing standard MLP networks (out of 12 different achi-
tectures, with various (linear decreasing) step size parameter schedules €) 100000 stepest
gradient descent steps were performed for the MLLP-net and one pass through the set for
PSOM network.

Visual inspection of (le) and (1b) shows a very good approximation of the
desired, highly non-linear mapping. In view of the extremely minimal training set
of 3x3x3 in (lc), this appears to be a quite remarkable result.

We recently compared another standard network type, the well-known back-prop
net, in a one and two hidden layer (of tanh() type) configuration (with output layer



of linear unit type.) We found that this class of problems is not suitable for the
BP-network. Even for larger training set sizes, we didn’t succeed in training them
to a performance comparable to the PSOM network, Table 1 shows the result of
two of the best BP-nets compared to the PSOM.

How does the PSOM work? In the next section we explain the algorithm, albeit
in a condensed form. For details see [10, 11, 13].

2 PSOMS

A Parameterized Self-Organizing Map 1s a parametrized, m-dimensional hyper-
surface M = {w(s) € X C IR%s € S C IR™} that is embedded in some higher-
dimensional vector space X. M is used in a very similar way as the standard discrete
self-organizing map: given a distance measure dist(x,x’) and an input vector x, a
best-match location s*(x) € S is determined by minimizing

E(s;x) = dist(x,w(s)). (1)

The associated “best-match vector” w(s*) provides the best approximation of input

x in the manifold M. If we require dist() to vary only in a subspace X' of X (i.e.,
dist(x,x') = dist(Px,Px’'), where P projects into X'), s*(z) actually will only
depend on Px. Then the projection y(z) = (1 — P)w(s*(x)) € X°" of w(s*(x))
that lies in the orthogonal subspace Xout can be viewed as a (non-linear) associative
completion of a fragmentary input x of which only the part Px s reliable. 1t 1s this
associative mapping that we will exploit in applications of the PSOM.
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Figure 2: (left) Associative completion w(s*(x)) of input x (x € X = Xy xout = R?
with dependable components Px € X™ but errant components in X°"") by best match
approximation w(s*(x)) on the PSOM-manifold M. Here the m = 1 dimensional M
is constructed to pass through four data vectors (square marked). (right:) The best
match parameter s*(x) in the parameter manifold S together with the “hyper-lattice” A
of parameter values (indicated by white squares) belonging to the data vectors.

M 1s constructed as a manifold that passes through a given set D of data ex-
amples (Fig. 2 depicts the situation schematically). To this end, we assign to each
data sample a point a € S and denote the associated data sample by wg. The set
A of the assigned parameter values should provide a good discrete “model” of the
topology of our data set (Fig. 2 right). The assignment between data vectors and
points a must be made in a topology preserving fashion to ensure good interpolation
by the manifold M that is obtained by the following steps.

For each element a € A, we construct a “basis function” H(-,a) : S — IR that
obeys H(a,a) = 1 and vanishes on all other points of A (we will mainly be concerned
with the case of A being a m-dimensional hyper-lattice; in this case, the functions
H(-,a) can be constructed as Lagrange interpolation polynomials, see [14]). Then,

w(s)= Y H(s a) wa. (2)
acA



defines a manifold M that passes through all data examples. Minimizing £ in Eq. 1
can be done by some iterative procedure, such as gradient descent or — preferably —
the Levenberg-Marquardt algorithm. This makes M into the attractor manifold of
a (discrete time) dynamical system. Since M contains the data set D, any at least
m-dimensional “fragment” of a data example w € D will be attracted to the correct
completion w. Any other inputs will be attracted to some interpolating manifold
point.

This approach is in many ways the continuous analog of the standard discrete
self-organizing map. Particularly attractive features are (¢) that the construction of
the map manifold is direct from a small set of training vectors, without any need for
time consuming adaptation sequences, (i#) the capability of associative completion,
which allows to freely redefine variables as inputs or outputs (by changing P on
demand), and (7i¢) the possibility of having attractor manifolds instead of just
attractor points.

3 Hierarchical PSOMs: Structuring Learning

If one wants to learn with extremely few examples, one inevitably faces a dilemma:
one the one hand, with few examples one can only determine a rather small number
of adaptable parameters and, as a consequence, the learning system must be either
very simple, or, and this is the usually relevant alternative, it must have a structure
that is already well-matched to the task to be learned. On the other hand, however,
having to painstakingly pre-structure a system by hand is precisely what one wants
to avoid when using a learning approach.

Is 1s possible to find a workable compromise that can cope with this dilemma,

i.e., that somehow allows the structuring of a system without having to put in too
much by hand?
One way to approach a solution is to split learning into two stages. (i) The earlier
stage is considered as an “investment stage” that may be slow and that may require
a larger number of examples. It has the task to pre-structure the system in such
a way that in the later stage, (ii) the now specialised system can learn fast and
with extremely few examples. Of course, this does not bring about the “miracle”
to learn with an unstructured system and a small number of examples.
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Figure 3: The transforming “T-PSOM” maps between input and output spaces (changing
direction on demand). In a particular environmental context, the correct transformation
is learned, and encoded in the internal parameter or weight set w. Together with an char-
acteristic environment observation tiret, the weight set w is employed as a training vector
for the second level “Meta-PSOM”. After learning a structured set of mappings, the Meta-
PSOM is able to generalizing the mapping for a new environment. When encountering any
change, the environment observation e gives input to the Meta-PSOM and determines
the new weight set w for the basis T-PSOM.

Concrete, we consider specialized mappings or “skills”, which are dependent
on the state of the system or system environment. Pre-structuring the system is



achieved by learning a set of basis mappings, each in a prototypical system context
or environment state (investment phase.) This imposes a strong need for an efficient
learning tool — efficient in particular with respect to the number of required training
data points.

The PSOM networks appears as a very attractive solution: Fig. 3 shows a hierarchi-
cal arrangement of two PSOM. The basis task of mapping from (possibly various)
input to output spaces is learned — and performed, by the “Transformation-PSOM”
(“T-PSOM”).

During the first learning stage, the investment learning phase, a set of basis
mappings 7; or context dependent “skills” is constructed in the “T-PSOM?”, which
gets encoded in the internal parameter or “weight” set w. The second level PSOM
is responsible for learning these entire parameter sets w of the first level T-PSOM,
therefore called “Meta-PSOM”.

The context situations are chosen such that the associated basis mappings cap-
ture already a significant amount of the underlying model structure, while still being
sufficiently general to capture the variations with respect to which system environ-
ment identification i1s desired. The system context is characterized by a suitable
environment observation, denoted .y, see Fig.3.

For each of the prototypical system environment situations j the constructed
T-PSOM weight set w; serves together with the environment observation .y ; as
a high dimensional training data vector for the second level Meta-PSOM.

Rapid learning is the return on investment in the longer pre-training phase. The
task of learning of an unknown system environment situation now takes the form of
an tmmediate Meta-PSOM mapping. Then the Meta-PSOM maps the new system
context observation e new into the parameter set wyeq. for the T-PSOM, encoding
the desired mapping i, cq -

4 Rapid Visuo-motor Coordination Learning

In the following, we demonstrate the potential of hierarchical PSOMs with the task
of fast learning of 3D visuo-motor maps for a robot manipulator seen by a pair of
movable cameras. The Puma robot is positioned behind a table and the entire scene
1s displayed on two windows on a computer monitor. By mouse-click, a user can,
for example, select on the monitor one point and the position on an (in the other
window) appearing line and the goal is to move the robot end effector tip to the
indicated world position, see Fig. 4. This requires to compute the transformation 7'
between pixel coordinates @ = (@’ @) on the monitor images and corresponding
world coordinates Z in the robot reference frame — or alternatively — the correspond-
ing six robot joint angles 7 (6 DOF). Here we demonstrate an integrated solution,
solving both simultaneously.

The T-PSOM learns each individual basis mapping 7} by visiting a rectangular
grid set of end effector positions & (here we visit a 3x3x3 grid in & of size 40 x

40 x 30cm?) jointly with the joint angle tuple 67; and the location in camera retina
coordinates (2D in each camera) Uf,ﬁf. Thus the training vectors wa, for the
construction of the T-PSOM are the tuples (Z;, 67;, @k ult).

However, each T; solves the mapping task only for the current camera position
pair, for which 7; was learned. Thus there is not yet any particular advantage to
other, specialized methods for camera calibration [4]. The important point is, that
we now employ the Meta-PSOM to interpolate in the space of mappings.

To keep the number of prototype mappings manageable, we reduce some DOF
of the cameras by requiring fixed focal length, camera tripod height, and twist
joint. To constrain the elevation and azimuth viewing angle, we choose one land

mark, or “fixation point” £;;, somewhere centered in the region of interest. After
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Figure 4: Rapid learning of the 3D visuo-motor coordination for two camera in changing
locations. The basis T-PSOM (m = 3) is capable of mapping to and from three coordinate
systems: the Cartesian robot world coordinates (Puma manipulator), the robot joint angles
(6-DOF), and the location of the end-effector (here the wooden hand replica) in coordinates
of the two camera retinas (see left camera view with cross mark). Since the left and right
camera change tripod place independently, the weight set of T-PSOM is splhit, and parts
wr,wr are learned in separate Meta-PSOMs.

repositioning any camera, its viewing angle must be re-adjusted, to keep this fixation
point visible in a constant image position, serving at the same time the need of a
fully visible region of interest. These practical instructions achieve the reduction of
free parameters per camera to the 2D lateral position, which can now be sufficiently
determined by one extra observation of a chosen auxiliary world reference point &,.;.
We denote the pixel coordinates, where &,.; becomes visible, by @,y = (Ufef , Ufef).
By reuse of the cameras as “environment sensor”, .y does implicitly encode the
camera positions.

In the investing pre-training phase, nine mapping 7; are learned by the T-PSOM,
each camera varying place on a 3x 3 grid, sharing the set of visited robot positions
& . Since the left and right camera change tripod place independently, the weight
set of T-PSOM is split, and only parts are learned in two separate Meta-PSOMs.
I.e. each training vector j for the left camera Meta-PSOM consists of (Ufef and

T-PSOM weight set part wy = (@¥, ..., @k;), analogous for the right Meta-PSOM.

This enables in the following the rapid learning phase for new, unknown camera
places. On the basis of one single observation @y, the desired transformation 7'
is constructed. As visualized in Fig. 4, 4.y serves as the input to the second level
Meta-PSOMs. There output are interpolations in-between previously learned pa-
rameter sets and they project directly into the weight set of the basis level T-PSOM.

After the rapid learning step the weight set the transforming T-PSOM can map
various directions (by using different projection matrices P ), e.g.:

(i) = Frlpsou(d; WL(Ufef)awR(ﬁfef)) (3)
_’(U) = F%—ngSOM(U; WL(Ufef)awR(ﬁfef)) (4)
u(7) FiZBsom (& wi(ir.,) wr(iy)) (5)
WL(Ufef) = FJI\Z?tCZ—PSOM,L(Ufef; Qr); analogwR(Ufef) (6)

Table 2 shows the experimental results averaged over 100 random locations &
(from within the range of the training set) seen in 10 different camera set-ups, from
within the 3 x 3 square grid of the training positions, located in a normal distance of
about 125cm (center to work space center, 1 m?; total range of about 55-210cm),
covering a disparity angle range of 25°-150°. For identification of the positions &
in image coordinates, a tiny light source was installed at the manipulator tip and a
simple procedure automatized the finding of ¥ with about £0.8 pixel accuracy. For



the achieved precision is important to share the same set of robot positions &;, and
that the sets are topologically ordered, here as a 3x3x3 (i) and two 3x 3 (j) grids.
It is not important to have an alignment of this set to any exact rectangular grid
in space, e.g., some radial grid of camera training positions is perfectly ok.

Direct trained T-PSOM with

T-PSOM Meta-PSOM
pixel @ — & Cartesian AZ 1.4mm 0.8% 44mm 2.5%
Cartesian & + ¢ pixel error 1.2pix 1.0% 33pix 25%
pixel @ § commanded — AZ  3.8mm 2.3% 54mm 3.0%

Table 2: Mean Euclidean deviation (mm or pixel) and normalized root mean square error
(NRMS) in % for 1000 points total in comparison of a direct trained T-PSOM and the
described hierarchical PSOM-network, in the rapid learning mode with one observation.

5 Discussion and Conclusion

PSOM exhibit good generalization capabilities, even for highly non-linear function
mappings and with remarkably small training sets. The reason for this is that
PSOMs combine the benefits of local models [2, 6, 8, 7, 1] with the ability of self-
organizing maps [5, 12] to use topology information as an additional constraint for
forming an interpolating hyper-surface through given data points. Due to their
continuous formulation of the map manifold M, PSOMs allow to exploit this ad-
ditional benefit even for data sets with very few elements, i.e., precisely for those
cases, where the use of additional information of how to interpolate 1s particularly
valuable.

For the PSOM, the additional topology information is provided with the “model”
A of the topological neighborhood relationships among the data samples. This
“topology model” provides additional curvature information, information which is
not available within other techniques, such as e.g. radial basis functions [9, 3].

Since this allows the construction of PSOMs from very small data sets (by a
direct, non-iterative process that yields exact values on the samples themselves!),
PSOMs offer versatile “building blocks” for modular systems.

A crucial question is how to structure such systems by learning. In the present
paper, we demonstrated a hierarchical approach that is motivated by a decomposi-
tion of the learning phase into two different stages: A longer initial learning phase
“invests” effort into a gradual and domain-specific specialization of the system.
This investment learning does not yet produce the final solution, but instead pre-
structures the system such that the subsequently final specialization to a particular
solution within the chosen domain can be achieved extremely rapidly.

Technically, the investment learning phase is realized by learning a set of pro-
totypical basis mappings (implemented as PSOMs) that attempt to cover the range
of tasks in the given domain. The capability for subsequent rapid specialization
within the domain is then provided by an additional mapping that maps a set of
observations that is sufficient to characterize a task instance into a suitable combi-
nation of the previously learned prototypical basis mappings. The construction of
this additional mapping again is solved with a PSOM (“Meta”-PSOM) that inter-
polates in the space of prototypical basis mappings that were constructed during the
“investment phase”.

We demonstrated the potential of this approach with the task of 3D visuo-motor
mapping, learnable with a single observation after repositioning a pair of cameras.



When comparing the distance range 0.5-2.1m of exercised positions to the po-
sitioning capabilities after learning by a single observation, the achieved accuracy
of 4. 4mm is very satisfying.

The presented arrangement of a basis T-PSOM and two Meta-PSOMs demon-
strates further the possibility to split hierarchical learning in independently chang-
ing domain sets. When the number of involved free context parameters is growing,
this factorization is increasingly crucial to keep the number of pre-trained prototype
mappings manageable.
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