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Abstract

We report on the implementation of two neural network algorithms for visuo-
motor control of an industrial robot (Puma 562). The first algorithm uses a
vector quantization technique, the “neural-gas” network, together with an er-
ror correction scheme based on a Widrow-Hoff-type learning rule. The second
algorithm employs an extended self-organizing feature map algorithm. Based
on visual information provided by two cameras, the robot learns to position its
end effector without an external teacher. Within only 3000 training steps, the
robot—camera system is capable of reducing the positioning error of the robot’s
end effector to approximately 0.1 percent of the linear dimension of the work
space. By employing adaptive feedback the robot succeeds in compensating not
only slow calibration drifts, but also sudden changes in its geometry. Hardware

aspects of the robot—camera system are discussed.

I. INTRODUCTION

The adaptive capabilities of motion control of biological organisms are still highly
superior to the capabilities of current robot systems. Therefore, various neural network
models have been developed that apply biologically inspired control mechanisms [2,
6, 7, 11, 12, 15, 16] to robot control tasks. During the last two years it has been
demonstrated by means of robot simulations that the neural network model [10, 12, 17],
based on Kohonen’s algorithm for self-organizing maps [4, 5], can be utilized for visuo-
motor control. In the present paper we will report on an actual implementation of
two newer versions of this algorithms for a system of two cameras and a PUMA 562,

a robot arm widely used for industrial manufacturing.
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The objective is to teach the system to position its end effector using information
gained solely from the pair of cameras. Neither an external teacher nor any prior
information about the geometry of the robot arm or the cameras will be employed.

The first algorithm uses the so-called “neural-gas” network, a new network algo-
rithm introduced recently by Martinetz and Schulten [13] and inspired by Kohonen’s
feature map algorithm [4, 5]. In previous work, Martinetz et al. adopted it for the
mentioned visuo-motor control problem and demonstrated its capabilities in several
computer simulations. This work paved the way for implementing the method on an
actual robot system and its evalution under real world conditions (some results have
already been published in [19]). Since large parts of neural network research are de-
voted to the development of new algorithms, we also felt the need to compare the
new method with the existing approaches. Therefore, we also implemented and eval-
uated the performance of the previous feature map algorithm and discuss the relative
costs and merits of the two methods. The second algorithm is based on the extended
self-organizing feature map algorithm [10, 17].

Random movement trials are used to train the network, consisting of between
100 to 400 neural units. Despite this small number of units, the robot accomplishes
a positioning accuracy limited only by the resolution of the two cameras providing
information about the spatial location of the target object. Furthermore, the robot
system succeeds in quickly adapting to sudden, drastic changes in its environment.
This adaptability is a major advantage over common commercial robot applications,
which depend on precise calibration of all system components. Any distortion caused,
e.g., by erosion or by a collision, requires a recalibration of the common robot system.
Generally the resulting error will be repeated over and over again until the error is
detected and an often time-consuming recalibration is carried out.

As demonstrated in this study both algorithms exhibit a good adaptivity on a fast
time scale: a drastic change of the length of one of the arm segments is compensated
using iterative visual feedback. If the change in length persists, the network adapts on

a slower time scale, thereby gradually obviating the use of the feedback correction.

II. THE ALGORITHM

The robot-camera system is shown schematically in Fig. 1. For each training step
a target location is presented at a randomly chosen location within the workspace of
the robot. Two cameras monitor the scene and a preprocessing unit identifies the
two-dimensional image coordinates of the target location for each of the two camera
images. The two pairs (uy, us), (us, us) of image coordinates are combined into a four-
dimensional vector Usgrger = (U1, Uz, us, u4)T. The set 4 C R* of all possible vectors
Uyqrge forms the input space of the network.

To be able to position its end effector correctly, the robot system has to know the
transformation ©(Ugrger) from Uygrger to the corresponding set of joint angles 0. The
transformation depends (i) on the geometry of all the robot links, (i) on the relative

position of the robot with respect to the cameras, and (iit) on the camera’s optical
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Figure 1: Schematic representation of the robot vision system. Two cameras observe the
target location (uygg4et) and the location of the end effector (v) of the robot arm in their
“retinas”. An image preprocessing unit extracts 4-dimensional vectors (uyq,ger shown) which
describe 3-dimensional workspace locations in camera coordinates. The PUMA robot arm is
commanded by a set of joint angle commands g which constitute the output from the neural
network.

mapping properties. In our investigation we consider the non-redundant case of a robot
arm with three degrees of freedom; the wrist is rigid. The same algorithm is likewise
capable of controlling redundant degrees of freedom, as shown in computer simulations
[10] . Besides the number of moveable joints, no further information about (i)—(iii)
will be used. The aim is to learn the correct transformation © : w50 C U — 0 C R?
without an external teacher.

The principle idea behind our approach to learn this highly non-linear transforma-
tion is to adaptively discretize the input space U into a set of NV disjoint cells F, with
p € {1,2,... N} and to approximate 0 within each cell by a linear mapping which is
gradually refined as more trials movements are explored. This is illustrated in Fig. 2.
To each cell F}, we assign one neural unit, storing three different data items: the refer-
ence or weight vector w,,, coding the center of the discretization cell, the output vector
(91 and a matrix A, that together specify a linear Taylor expansion of ©(ugge:) Within

the cell F),,
O(Wsarget) = 0+ Ay (Wrarget — Wy). (1)

(91 is the zero order term and the 3x4-matrix A, is a modified Jacobian matriz,
which denotes the first order term. Both the choice of the discretization cells and the

adaptive learning of their outputs (91 and A, is achieved by means of the “neural-gas”
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Figure 2:  Schematic representation of the “Neural-Gas” algorithm. Left: the 4-d input
space U with the reference vectors w, and the input vector u¢,,ge¢ projected into it. Besides
the reference vectors w, each neuron p (middle layer) stores two output quantities 4, and
A, (right) assigned to it. The arrows indicate the adaptation step, as explained in the text.

network [13, 19] or, alternatively, by employing the extended self-organizing feature
map algorithm as described below.

The learning procedure consists of a series of training steps. For each training step
a target position in the workspace is presented and the vector uy,,4¢; 1s extracted from
the camera images. This is illustrated in Fig. 2 where the neural unit which has its
reference vector w, closest to the input vector w4 is labeled by pg. The selected
unit o will be the main target of the subsequent training step and also will determine
the output of the system gout by virtue of eqn. (1) with u = po. Later we will modify
this “winner takes all” scheme by involving neighboring neurons and arriving at a
“winner takes most” algorithm.

A first coarse movement of the robot arm is carried out to attain the joint an-
gles 58“t, to be specified later in eqn. (16). The subscript indicates the number of
visual feedback steps (see below) used, 58“t denotes the first feed forward result of
the network. The resulting end effector location seen by the cameras is denoted by
vo. With the Jacobian matrix any residual deviation from the desired target loca-

tion (Wigrger — Vo) is transformed into a correctional fine movement 5f“t (eqn. 18). To



further reduce the remaining positioning error, this correcting fine movement can be
repeated iteratively using the visual feedback information of the end effector locations
V1,Va,.... In order to gain the necessary information for the adaptation step, at least

a single fine movement has to be carried out during the learning phase.

A. The Learning Rules

An important ingredient of the algorithm is to apply the learning steps not only
to the “winner” but to a whole subset of neurons, thereby, increasing its rate of
convergence. However, the adjustment has to be confined to a “neighborhood region”
of the selected neuron, containing only neurons that have to learn similar output
values and that can, therefore, profitably participate in the same adjustment step.
The essential difference between the two implemented algorithms is the definition of
this “neighborhood”. The “Extended Self-organizing Feature Map” algorithm uses
fixed neighborhood relations in contrast to the “Neural Gas” approach which builds

these relations dynamical. ( for an alternative technique see [3])

1) “Neural Gas” Algorithm : In the “neural gas” algorithm the degree of neighborhood

is given by the “rank of closeness” k of the neuron’s reference vector to the input vector.
For each new target location we assess the sequence (g, i1, ..., piny—1) of neural units

by increasing order of their distance to the input vector usg, g, 1. €.

HWMO — Wearget|| < HW/M — Wiarget]| < -+ < HW/«LN—1 — Wearget|- (2)

The learning step size for neuron gy is then chosen as a monotonously decreasing
function of its closeness rank order k.

After completion of a trial all the neural units are adjusted according to

Wy Wy F e g(k) - (Warger — Wiy (3)

Here ¢ and ¢’ € [0, 1] scale the overall size of the adaptation step, and g(k) and
¢'(k) are functions of the closeness rank k (the primes denote parameters belonging to
the output side). They have a maximum value of unity for the closest neural unit po,
i.e., g(0) =1 and ¢'(0) = 1, and decrease to zero as k increases. A convenient choice
is

oy =esp(=5)i g = e (). )

Here A and ) determine the size of the neighborhood region. Initially, their values are

chosen fairly large for rapid, coarse adaptation of many neural units at each adaptation

step, and they gradually decrease in the course of the learning phase in order to enable
a fine-tuning of the system.

Figure 2 illustrates the update step (3): the reference vectors are “pulled” towards

the input vector Uy 4e¢. The differences of the arrow length reflect the modulation of



the adaptation strength depending on the closeness rank k of the units g (shown in
different gray levels). This procedure generates a very homogeneous discretization of
the relevant submanifold of the input space as explained in more detail in [13].

To complete the description of the adaptation equations (4) and (5), we still have
to specify the quantities AA, and A@_)M. AA, is chosen such that the step corresponds

to a stochastic gradient descent for the quadratic cost function
B = L (A% — A Ave)?) (7)
with Avegy=vi—vo  and A = 63 — 3+, (8)
and is given by an error correction rule of Widrow-Hoff type [21]

AA, = || Ave |72 (AG5" — A Aver) AVE. (9)

To obtain A@_)M for the correction of (9_1“ we estimate a new 5: for the desired value

of (91 and employ the locally valid relation 58“t — 5: = A,(vo—w,). This yields
A, =07 —0,=05"—0°" — A,(vo—w,) (10)

which completes our description of the learning rule for the “neural gas” algorithm.

2) The Extended Self-Organizing Feature Map Algorithm : The second algorithm is

based on Kohonen’s algorithm for self-organizing maps to adaptively discretize the in-

put space [4, 5]. This algorithm was significantly extended in [18] by assigning matrix-
valued output quantities to the neurons and thus taking advantage of its topology
conserving properties in learning these output values. The network is now structured
and consists of a Fuclidean lattice of neural units of the same type as the neural gas
units. The dimensionality of the lattice is chosen to fit the dimensionality of the work
space. For the sake of distinction from the “neural gas” scheme we change the notation
and label the neural units by their lattice position vectors r (r € N?) instead of p.
The selection of the “winning” neuron s with minimal distance between the reference

vector and the input vector uyg,ges
||Ws - utarget” — rglgl ||Wr - utarget” (11)

is analogous to the selection of the neural unit py described above.

The learning rules are formally very similar to (3)-(5), i.e.,

Wiy & Wp +e- hrs : (utarget - Wr) (12)
0, — O.+¢c - hl, - A6, (13)
Ay — At Rl AA, (14)

The crucial difference to the “neural gas” algorithm are the replacement of g(k)
and ¢'(k) by the functions h.s and h.,. These functions are “bell-shaped” functions
of the lattice distance ||r — s|| from the selected neuron. Their effect is to specify a

“neighborhood region” of the selected unit, as in the “neural gas” algorithm. However,
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Figure 3: Schematic representation of the extended feature map algorithm. In contrast to
the previous figure the “neural gas” is substituted by the a lattice structure (middle). One
planar slice of the cubic lattice of neural units is shown containing the selected neuron s.
The neighboring neural units are marked by different gray levels.

the distance measure is different: instead of a distance ranking in the input space U,

the distance is now measured by means of the lattice metric. A suitable choice for hys

2 2
hys = exp (—M) h.. = exp (—M) . (15)

202 20"

is a Gaussian

Parameters o and o’ play similar roles as A and A in the “neural gas” scheme and

determine the size of the neighborhood region in a learning step.

B. Averaged Output

—

The transformation 6(usar4e) is locally approximated by (1). For the positioning
movement, however, not only the linear approximation associated with the unit pg
“closest” to Uyt determines the joint angles, but the output of a whole subset of
neural units with their vectors w,, close to uy,,4et 1s taken into account. This is achieved

by averaging (1) over all neural units pj, weighted by the function ¢'(k) (eqn. 6) or
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weighted by a more general but similar function ¢g™**(k). Similar to eqn. (3), the
neural unit po with its w,, closest to u,4e¢ contributes the most, for the unit g4 with
its w,, second closest to uy,,4¢ the contribution is second largest, and so forth.

The joint angles which the network produces to reach the target are then given by
05t =57 32 ) (G + Ay (aarges = W) (16)
k

where

s= zkj g™ (k) and  ¢™(k) = exp (_ Xff) . (17)

Similar to the coarse movement defined through (16) the corrective fine movement

upon the n-th visual feedback v, leads to the weighted averaged network output
Ot =0+ 7 3™ (k) Ay (Wearger — Vi), (18)
k

The extended self-organizing feature map algorithm uses an analogous output av-
eraging scheme, i.e. g(k)™ is substituted by k™" = exp(—(||r — s||/c™*)?/2) and
r replaces g, and k.

I1I. THE SET-UP

Complex control algorithms for a robot require the capability to quickly process and
respond to high bandwidth sensory input. The design of a robot vision system which
provides a testbed for neural algorithms has to overcome the limitations of today’s
commercially available robot controllers. These limitations are a lack of computational
power, lack of expandability or compatibility to other systems, and little transparency
of their programming languages or operating systems. In our implementation we chose
to replace large parts of the original Puma controller software and employed a UNIX

workstation to directly control the robot in real-time via a high speed communication

link.

A. Components

The main components of our system are illustrated in Fig. 4. The Puma 562 is
a 6-degree of freedom manipulator which is connected to the Unimation Controller
(Mark III, bottom left) which itself contains several controllers. The separate servo
controllers — one for each revolute joint — are commanded by a main controller LSI-
11/73 CPU.

In industrial applications the robot is programmed in an interpreted robot language
VALII. We chose to replace the VAL I software, since the main controller LSI-11 is not
capable of handling high bandwidth sensory input itself, e. g., from a video camera, and
VALII does not support flexible control by an auxiliary computer. To achieve a tight

real-time control directly by the Unix workstation we installed the software package
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Figure 4: The main hardware components of the robot system.

RCCL/RCI (Robot—Control-C-Library and Real-time Control Interface) [8]. This
package allows the user to issue robot motion requests from a high level control pro-
gram (“planning task” which is written and executed as an ordinary C program) to
the trajectory control level (“control task”) via shared memory communication. The
control task is executed periodically at a high priority (kernel mode) and is respon-
sible for reading feedback data, generating intermediate joint setpoints, and carrying
out a “watchdog” function (collision avoidance). During each control cycle (typically
20ms) a command package is sent to the robot controller via the parallel port. The
receiving main controller LSI-11 CPU is reprogrammed to dispatch commands to the
joint servos, collect feedback data from them, and perform elementary safety checks.
At power-up time the reprogramming software is downloaded and started by the host
computer through a serial line, emulating the controller console. The software then
resides at the controller and can be addressed through the parallel port.

The Unix workstation is a VME-based SUN Sparcsystem 4/370, which hosts some
interfacing hardware and two image processing boards (ICS-400, Androx Inc., MA),
each based on four digital signal processors. These boards provide the comput-
ing power for fast image preprocessing and feature extraction. The sensory input
comes from two monochrome CCD cameras (560x480 resolution), oriented towards

the robot’s workspace with a disparity angle of about 50°.



B. Image Data Extraction

To keep the problem of image segmentation simple during the initial stage of our
research, we mounted a miniature lamp on the gripper hand (lamp power controlled
by software). This object is visually well defined and can be easily discriminated
against most backgrounds. To identify the location of the lamp in one of the two
camera images, the pixel set Il,,,, of the currently maximally bright pixels in the
video frame is determined. The center of the minimal rectangle I1,..; enclosing II,,,,
is taken to approximate the exact target location in image coordinates, which implies
a resulting discretization of u; in 0.5 pixel intervals. A subsequent consistency test
assures identification of the lamp rather than identification of a spurious reflex. It

includes checking the geometrical size of I, (which should be of the order of 5 pixels),

max

mar. In

minimal covering ratio of Il,..; by Il,,.,, and bounded maximal brightness

mar __ ﬁmax

dubious cases, a minimal response 37" ¢ to turning off the lamp is verified.

C. Training Procedure

During the learning phase several hundred randomly chosen targets within the
workspace must be presented to the robot. This can be achieved very conveniently by
operating the robot in what we call a “split brain” fashion: the controlling program
alternates between the following two modes without passing any information except
the camera input.

e Set target mode: In this mode, the robot arm is used to indicate the target location
to the camera system. This position is randomly chosen with a uniform distribution
in joint angle configuration space. The cameras view the resulting position of the
end effector uy, 4 and the arm returns to its previous configuration or any other
configuration.

o Retrieve position from camera information: The neural network algorithm out-
puts the joint angles 58“t(utarget) for the coarse movement, followed by the fine move-
ment 5f“t(vo) after processing visual feedback information v;. For a maximum posi-
tioning accuracy the feedback control loop might be repeated at this point (see section
IV.A.3). During the learning phase the adaptation steps (3)-(5)/(12)-(14) are per-
formed.

The workspace consists of a sphere segment, oriented towards the cameras and
enclose a volume of approximately 1 m® while excluding a safety zone above the table
and behind the robot base. In the neighborhood of the “elbow singularity”, which
denotes the manipulator configuration with a straight arm, a small arm straightening
translates to a very large change in the elbow joint angle. The Jacobian matrices
A are ill-conditioned in these remote workspace areas, therefore, their values cannot
converge to a meaningful value and positioning ability is significantly reduced. To
separate these effects, the network was trained and tested using a sphere segment with

a radius that was about 10 cm smaller than the possible maximum.

10



D. Performance Measurement

The performance of the network is monitored by computing the average Fuclidean
distance between target and end effector position. Due to the “split brain” procedure
this can be done with sufficient accuracy by evaluating the well-known geometry of
the robot (e.g. [1]) and differences of joint angles, read from the calibrated built-in
encoders.

Figure 5 shows the experimental result of an accuracy test (for details see figure
caption). The test demonstrates that the measured repetition accuracy of the robot
arm is about one order of magnitude better than the resolution of the image prepro-
cessing and, therefore, the method for performance monitoring is sufficient for our
purpose. The particular measurement method captures gear and encoder imprecisions
as well as pixel jitter.

20

17.50

15

12.50

10

7.50

Camera coordinates (arbitrary offset)

0 5 10 15 20 25 30 35

Transversal linear move [mm]

Figure 5: Typical result of a straight test move of the end effector (here in a transversal
horizontal direction). Plotted are the extracted camera coordinates (uq, ug, us, u4) versus the
linear displacement (with arbitrary offsets). The plateaus are caused by the discretization in
0.5 pixel steps and the flanks are broadened by repeating the path interval five times (round
trip). The comparison of the flank width and the plateau width, proves that the repetition
accuracy of the robot arm is higher than the resolution of the image preprocessing.
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IV. EXPERIMENTAL RESULTS

A. The “Neural-Gas” Algorithm

1) Parameters and Initialization : In this section we present the experimental results

obtained by applying a “neural gas” network with N = 300 units. The parameters ¢, &’
and the widths A, X', A7 all had the same time dependence p(t) = pi(p;/p:)!/tme with
t as the number of already performed learning steps and ¢,,,, = 4000. The initial and
final values were chosen as ¢; = 0.3,e; = 0.05,¢} = &}, = 0.9, \; = 150, \] = A — 5()
and Ay = A} = X}””’ = 1. 2T7/he Jacobians A, were initialized by assigning a random

value from the interval [:I:m] to each element. A similar procedure was used for the

initialization of the joint angles (91.

12
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Figure 6: (a-f) The development of the network seen as a projection of the reference vectors
w onto the image planes of the cameras. Shown are the stages after t learning steps, with
t=1, t=100, t=300, t=1500, and t=tmax=4000 (both cameras, bottom picture).
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2) Evolution of the Reference Vectors w :
Figures 6 a-f present a sequence of learning stages after ¢t = 0, ¢t = 100, ¢ = 300,
t = 1500, and ¢,,,,,, = 4000 positioning trials. The reference vector of each neural unit is

visualized by projecting w onto the image plane of each camera. Initially, the vectors w
are distributed randomly in the image of the cameras (left upper picture). After about
2000 learning steps the initial distribution has retracted from the four-dimensional
input space (as initialized) to the relevant three-dimensional subspace corresponding
to the actual workspace. Finally, a regular distribution of the neural units emerged,
reflecting the economical and demand-driven allocation of computational resources

effected by the neural network.

3) Positioning Performance and Adaptation Capabilities :

125 - T T T i
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Figure 7:  The positioning capabilities of the “neural gas” network over the course of
learning. Shown is the averaged error after the coarse movement (open loop: upper curve),
and after 1, 2,... 5 iterative feedback loops (“fine moves”). After 3000 learning steps the
last arm segment was suddenly elongated by 100 mm (~ 10 % of the linear dimensions of the

workspace).

Figure 7 presents the averaged positioning accuracy versus the number of already
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experienced learning steps. The upper curve shows the average') Euclidean deviation
from the desired target location after the initial coarse movement (open loop system)
and the lower curves represent this positioning accuracy after using iteratively 1, 2,
3, 4, and 5 visual feedback cycles? for correctional movements. Initially the position
accuracy increases rapidly and reaches an average positioning error of 1.3 mm within
the first 3000 training steps. A comparison of the curves illustrates the substantial
improvement of using visual feedback.

A very important advantage of self-learning algorithms is their ability to adapt to
different and changing environments. To demonstrate the adaptability of the network,
we interrupted the learning procedure after 3000 training steps and extended the
last arm segment by 100 mm. The right side of Fig. 7 displays how the algorithm
responded. After this drastic change of the robot’s geometry only 300 further iterations
were necessary to readapt the network for regaining the robot’s previous positioning
accuracy. Employing visual feedback the network is able to adapt while compensating

immediately for the distortion.

4) Influence of Collective Learning: We now want to ask: how much does the col-

lective adaptation of the output of neighboring neural units influence the learning
capabilities of the system? To answer this question we compare two learning runs, one
regular run and one with a non-shared output learning scheme (A" = 0).

When positioning skills are poor — as they are in the the early learning phase, and
throughout the entire latter run — the network might request motor commands which
would drive the robot arm into prohibited areas, like the table zone. These requests
are rejected. Consequently, these deficient trials cannot be recorded by averaging the
absolute positioning errors as shown in Fig. 7. To obtain a performance measure that
also accounts for these faulty trials, we now consider the probability P;(R) to stay at

a time ¢t within a given error margin R. P;(R) can be written as

P,(R) = /ORpt(r)dr (19)

when r is the Euclidean positioning error. Here p(r)dr is the probability that for a
trial at time ¢ the error is found in the interval [r,r + dr].

The upper graph of Fig. 8 shows P;(R) for a system of units learning independently
(A =0 in eqn. 6). As can be seen the positioning skill, shown at ¢ = 500, ¢t = 1000,
t = 2000, and t = t,,,, = 4000, increases rather slowly. The resulting control is still
insufficient, each third effort is erroneous. The lower graph of Fig. 8 shows P,(R) for
a system of units learning collectively. The results show that after only a few hundred
trials the algorithm already performs better than the independently learning system
ever achieves to perform. The results for ¢ = 500, ¢ = 1000, ¢ = 1500, ¢ = 2000, and
tmar = 4000 demonstrate that the positioning skill develops rapidly in the beginning

and achieves asymptotically an accurate performance.

'Moving average: F(t) = aF(t)+ (1 — a)F(t — 1) with o = 0.03.
2A single movement (18) per learning step is the minimum to obtain necessary feedback for
learning; the corresponding curve is drawn bold.
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Figure 8:  Positioning ability with (upper graph) and without (lower graph) collective
learning of the output values. Plotted is the probability P;(R) to keep a given error tolerance
R at different learning stages ¢ after one feedback loop.

5) Scaling Behavior: Figure 9 indicates the scaling behavior of the final averaged

positioning accuracy after 4000 learning steps versus the number NV of employed “neu-
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ral gas” units. A and A are scaled in linearly with V. The upper curve depicts the
coarse move’s outcome, the lower curves show the result for an increasing number of
visual feedback loops. As one can easily see, the more neurons one employs, the fewer

feedback loops are needed to achieve the same precision.
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Figure 9: The final positioning error as a function of the number of neural units employed
in the learning scheme. Shown are the averaged positioning error without visual feedback
(“Coarse move”) and after 1, 2,... 9 feedback loops using visual feedback information.

B. The extended self-organizing feature map algorithm

1) Parameters and Initialization : In this section we will compare results from an

experiment using the extended self-organizing feature map algorithm with a 7x7x7
lattice of neural units.
The initialization was similar to the method described in Section A and the pa-

xz

rameters ¢, &’ and the widths o, 0”@ also had the same exponentially decaying time

dependence. The values were chosen as ¢; = 1,6y = 0.01,¢] = &} = 0.9, 0y = 2.5,
oy = 0.01, 0™ = 1, and U}””’ = 0.1. The Jacobians A, and the joint angles (91 are
randomly initialized similar to the “neural gas” algorithm. In contrast to the latter
algorithm the network has first to “untangle” itself for the purpose of creating a topo-
logical ordering of the network. This ordering is essential to ascertain a meaningful
participation of neighbored neurons in the learning phase. To keep the initial ordering
time to a minimum the initial learning parameters ¢;, %, 0;, o/ must be relatively large.

For further quick convergence the neurons have to decouple rapidly (o, 0’ decreasing)
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and must be adjusted by finer and finer learning steps (¢ decreasing). In order to
achieve a rapid convergence and keep good adaptive capabilities of the algorithm in
the later learning phase, we chose to first decrease o’ exponentially from o/ = 2.5 to

0.5 at t = 2000 learning steps and keep it constant from then on.

2) Positioning Performance and Adaptation Capabilities : Figure 10 shows the records

of the same experiment as constructed for the “neural gas” scheme presented in
Fig. 7. The comparison of the two graphs demonstrates the qualitative and quan-
titative equivalence of these two algorithms. The final positioning skills are equally
accurate (1.3mm) and a sudden change of the robot’s arm length leads to the same

adaptive response as in the case of the “neural gas” algorithm.

I I I
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50 [ Fine moves

Positioning Error [mm)]

0 e
0 1000\_/2000 3000 4000

Number of Learning Steps

Figure 10: The positioning error of the extended Kohonen network over the course of learn-
ing. Similar to the previous figure, the averaged error is shown after the coarse movement
(open loop: upper curve) and after 1, 2,...5 iterative feedback loops (“fine moves”). After
3000 learning steps the last arm segment was suddenly elongated by 100 mm (~ 10 %).

V. Di1scussioN AND CONCLUSIONS
We investigated two visuo-motor control algorithms for the positioning task of an
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industrial robot system, the “neural gas” and the extended self-organizing feature map
algorithm. Both algorithms followed the concept of adaptive partitioning of the input
space and storage of local linear maps. The major difference between them is the
definition of “neighborhoods”, which enable a successful participation of neural units
in learning steps. For the given control problem both algorithms performed similarly.
The main benefit of the “neural gas” algorithm becomes obvious when the topology
of the submanifold in the input space is unknown or inhomogenous as shown in [13]
for a constructed partly one-, two- and three-dimensional input space and in [9] for
the fractal submanifold of a chaotic time series attractor.

The extended self-organizing feature map algorithm is slightly more dependent
on proper tuning of the learning parameters than the “neural gas” algorithm. As
mentioned above, in the worst case of a random initialization of the reference vectors
w, the network needs some time to “untagle” and “unfold” in the input space. The
amount of time depends strongly on the learning parameters ¢(¢) and o ().

Compared to the predecessor versions [10, 17], of the introduced learning algorithms
a significantly increased learning rate was accomplished. The reduction of the required
number of trial movementsis due primarily to an “individualization” of the neural units
in the learning scheme. Former versions [11, 17] have applied the update rules (9) and
(10) only to the “winning” unit po (or s), thus, implicitly defining new estimates 0~

and A* for the desired values of the linear map (1) by
AAMO =. A* — AMO 5 AGMO =. 0* - 0[&0 (20)

Subsequently, 0* and A* have served also all other neural units it as the current,

universal goal value towards which they have been “pulled”

further modulated by the neighborhood function &'¢’(1) (or €'hl,) as described in
eqn. (4-5/13-14).

This form of tight cooperation is now replaced by the more collective and parallel
learning scheme (all units apply eqn. 9 and 10), enabling the units to learn indepen-
dently from the trainings examples. Particularly in the initial training phase, large
neighborhood size parameters A and X (or o,0’) are desirable, coupling also units
which have to learn rather different output values. The independent learning sig-
nificantly reduces the time consuming effect of mutual deflection from already well
learned values for the Jacobian matrices A, (or A,). Subsequently it generates a
quicker convergence of the (91 (or (9_;) output values (eqn. 10).

This collective learning scheme was first used for non-linear time series prediction
with self-organizing maps [20] and adopted by Martinetz for the “neural gas” algorithm
for the visuo-motor control problem [14, 19] as presented in this paper.

Both learning algorithms described above achieve a final positioning accuracy of
1.3mm, or 0.1% of the linear dimension of the workspace of the robot arm. Fur-
thermore, the system succeeded to rapidly adapt to drastically changing situations.
These algorithms achieve a precision that is higher by one order of magnitude than
earlier neural network implementations, like Kuperstein’s system with 4-6 % average
deviation [6, 7].
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The accuracy is currently limited by the image processing resolution and not by
the control algorithm. There are several fairly simple possibilities to enhance the
performance: the use of additional cameras for accuracy sensitive parts of the work
space or employing cameras with better resolution. Another possibility would be to
employ the gray value information in the gray image and resolve uyy, ¢ and v to
subpixel precision.

We conclude that the neural-gas algorithm with collective neighborhood learning

provides an efficient, robust and accurate learning scheme for real world robot control.
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